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Abstract
This paper addresses the problem of computing the eigenvalues lying in the
gaps of the essential spectrum of a periodic Schrödinger operator perturbed
by a fast decreasing potential. We use a recently developed technique, the
so-called quadratic projection method, in order to achieve convergence free
from spectral pollution. We describe the theoretical foundations of the method
in detail and illustrate its effectiveness by several examples.
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1. Introduction

It is well known that the problem of approximating the eigenvalues lying in the gaps of the
essential spectrum of a self-adjoint operator by a sequence of finite-dimensional problems (e.g.
for numerical analysis) is far from trivial. The presence of essential spectrum both above and
below an eigenvalue means that there is no obvious variational principle (cf, e.g., [DoEsSe]),
so an approximation/computation by a standard projection method is not always possible. The
main difficulty is due to the existence of sequences of eigenvalues of the (finite-dimensional)
approximate operators, accumulating at points in the gaps which do not belong to the spectrum.
These points are called spurious eigenvalues, and the phenomenon itself is often referred to
as spectral pollution.

It has been shown, for general unbounded self-adjoint operators, that spectral pollution in
a projection method may occur at any real point of the resolvent set located between two parts
of the essential spectrum (see [LeSh, theorem 2.1]). This is a consequence of the fact that the
resolvent is not compact. A substantial amount of research has been devoted to finding ways
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of choosing the projectors, in order to achieve a ‘safe’ method for particular problems, see,
e.g., [RaSa2Va] and [BoBr]. Techniques vary considerably according to the problem and are
by no means universal.

In this paper, we address the question of spectral pollution and its avoidance for a perturbed
periodic Schrödinger operator

H := −� + V, (1.1)

acting in the Hilbert space L2(RN), where V = Vp + Vd , with Vp being purely periodic with
respect to some lattice of R

N and Vd being fast decaying at infinity. The essential spectrum
of H is determined by Vp. It consists of bands of absolutely continuous spectrum, separated
by gaps in the resolvent set. If Vd = 0, the spectrum is purely essential. If Vd �= 0, discrete
eigenvalues may appear in the gaps, see [DeHe].

A usual method for finding the essential spectrum of H analytically, the so-called Floquet–
Bloch technique, has been well studied (see, e.g., [ReSi], [Ku] and the references therein). It
gives a decomposition of the periodic part of the operator into a direct integral of operators
on a basic periodic cell. This reduces the problem of finding the endpoints of the bands in
the essential spectrum, to the problem of finding the eigenvalues of differential operators in a
compact domain with regular boundary conditions.

Much less in known about the discrete spectrum of H, which has to be either estimated
numerically or studied by means of asymptotic techniques (for the latter see, e.g., [DeHe], [Bi]
and [Su]). As we shall see below, the natural approach of truncating R

N to a large compact
domain and applying the projection method to the corresponding Dirichlet problem is prone
to spectral pollution. This makes the numerical localization of these eigenvalues particularly
difficult.

The purpose of this paper is to describe an alternative procedure for finding eigenvalues, the
so-called quadratic projection method, recently studied in an abstract setting in [Sh], [LeSh],
[Bo1] and [Bo2]. The distinctive feature of our method is that the underlying discretized
eigenvalue problem is quadratic in the spectral parameter (rather than linear) and has non-real
eigenvalues. Its main advantage over a standard projection method lies in its robustness: it
never pollutes and it always provides a posteriori two-sided estimates of the error of computed
eigenvalues.

The paper is organized as follows. In section 2, we discuss the phenomenon of spectral
pollution in a standard projection method and discuss the quadratic projection in an abstract
context. Our corollary 2.6 is an improvement upon previously known non-pollution results
for the general quadratic method. In section 3, we provide details on how to implement the
quadratic projection method for the numerical localization of the eigenvalues of operator H.
We also discuss some concrete numerical examples, but deliberately avoid including the full
account of the numerical procedures we have used, in order not to overload the text with
unnecessary technical details. These will appear elsewhere.

2. The quadratic projection method

2.1. Spectral pollution in an ordinary projection method

Before proceeding to describe our method, we want to give a rigorous motivation why it is
needed at all, and why spectral pollution is intrinsic in the standard projection method.

Let A be a self-adjoint operator in a Hilbert space H with a dense domain, Dom(A). The
spectrum of A, Spec(A), can be decomposed into the discrete spectrum, Specdisc(A), consisting
of isolated eigenvalues of finite multiplicity, and the essential spectrum, Specess(A) :=
Spec(A)\Specdisc(A) = {λ : A − λI is not Fredholm}.
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Take a finite-dimensional subspaceL ⊂ Dom(A), and let �L : H −→ L be the orthogonal
projection onto L. Let AL := �LA � L.

The projection method, also known as the Galerkin method, consists in truncating the
(infinite-dimensional) spectral problem Au = λu to

ALu = λu for some u ∈ L\{0}. (2.1)

If the operator A is bounded from below and has a compact resolvent, this provides an effective
way of numerically estimating the eigenvalues of A. The kth eigenvalue of (2.1) will always
be above the kth eigenvalue of A, counting multiplicity, [ReSi, section XIII.1]. Furthermore,
if L approximates Dom(A) reasonably well, then the first few eigenvalues of (2.1) will be
close to the corresponding ones of A.

A precise statement can be easily obtained from the minimax principle:

Lemma 2.1. Let Ln be a sequence of finite-dimensional subspaces of Dom(A). Assume that A
is bounded below and has a compact resolvent. Let λ1 � · · · � λm be the first m eigenvalues
of A. Let

E = Span{u ∈ Dom(A) : Au = λku, 1 � k � m}
be the spectral subspace associated with {λ1, . . . , λm}. If

lim
n→∞

∥∥Ap
(
u − �Ln

u
)∥∥ = 0 (2.2)

holds for p = 0, 1 and all u ∈ E , then the kth eigenvalue of (2.1) approaches the kth eigenvalue
of A as n → ∞ for 1 � k � m.

We omit the proof.
In some particular cases it is also possible to estimate the convergence rate of the

eigenvalues [StFi].
Similar results can be established if the resolvent of A is non-compact, for eigenvalues

outside the extrema of Specess(A). However, the situation changes if we want to approximate
an eigenvalue in a gap of Specess(A). There is no easy minimax principle, and spectral
pollution may happen at any point of the gap.

The difficulties involved in the computation of these eigenvalues are well known for
particular operators, see, e.g., [BoBr] or [RaSa2Va]. Moreover, in a generic situation we have

Lemma 2.2. If λ �∈ Specess(A) is such that α < λ < β where α, β ∈ Specess(A), there exists
a sequence of subspaces Ln satisfying (2.2) for all p ∈ N and all u ∈ Dom(A), such that
λ ∈ Spec(ALn

) for all n ∈ N.

This lemma directly follows from [LeSh, theorem 2.1].

2.2. The abstract quadratic projection method

Let, as before, L be a finite-dimensional subspace of Dom(A), and let E = {e1, . . . , en} be a
basis of L. This basis need not be orthogonal.

Consider the quadratic matrix polynomial

PL(z) := QL − 2zAL + z2BL, (2.3)

where

[BL]jk = 〈ej , ek〉 [AL]jk = 〈Aej , ek〉 [QL]jk = 〈Aej ,Aek〉. (2.4)
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In numerical analysis, AL is called the stiffness matrix, BL is a mass matrix and QL is a bending
matrix. If E is an orthonormal basis, then AL = �LA � L and BL = Id � L. Additionally, if
E ⊆ Dom(A2), then QL = �LA2 � L and PL(z) = �L(A − z)2 � L.

We define the spectrum of the matrix polynomial PL, Spec(PL), as the set of µ ∈ C such
that

PL(µ)u = 0 for some u ∈ L\{0}. (2.5)

Since BL is non-singular, det(PL(z)) is a polynomial in z of degree 2 dim(L). Moreover, if
µ ∈ Spec(PL), then also µ ∈ Spec(PL). Therefore, Spec(PL) is a set of at most 2 dim(L)

complex points, symmetric with respect to the real axis.
The core idea of the quadratic projection method lies in the fact that Spec(A) can be

well estimated if one knows the points of Spec(PL) which are ‘close’ to the real line, see
corollary 2.5 and theorem 2.7. In [Sh], [LeSh] and [Bo1], Spec(PL) is called the second-order
spectrum of A relative to L. This set was first studied in connection with the spectrum of A in
[Da], where the name originated.

Remark 2.3. Intuitively, the quadratic projection method arises from the following simple
observation. Let ζ ∈ R lie in a gap of the essential spectrum. By virtue of the spectral theorem,
the discrete eigenvalues of (ζ −A) inside the corresponding shifted gap of (ζ −A) containing
the origin are also the discrete eigenvalues of (ζ −A)2 lying below the bottom of the essential
spectrum of (ζ − A)2. This suggests that the truncations of the latter operator must provide
information about the localization of a portion of Specdisc(A) near ζ . The quadratic projection
method is a rigorous realization of a similar idea.

The main reason for preferring (2.5) over (2.1) for estimating the spectrum of A lies in
the following observation. Let D(a, b) be the open disc in the complex plane with an interval
[a, b] as a diameter:

D(a, b) :=
{
w ∈ C :

∣∣∣∣w − a + b

2

∣∣∣∣ <
b − a

2

}
.

Theorem 2.4 ([LeSh, lemma 5.2]). Suppose that (a, b) ∩ Spec(A) = ∅. If z ∈ D(a, b), then
the matrix PL(z) is non-singular.

Proof. Our proof is slightly different from that of [LeSh]. Let z ∈ D(a, b). Let

�z := {(λ − z)2 : λ ∈ (−∞, a] ∪ [b,∞)}.
We first show that 0 �∈ Conv�z (here Conv� denotes the convex hull of the set � ⊂ C).
Indeed, let θ be the angle at z of the triangle T whose vertexes are a, b, z. Elementary
geometric arguments show that θ > π/2. Then the transformation m : λ �→ (λ − z)2 maps
the angular region

B = {(w − z) : ρw ∈ T for some ρ � 0}
into another angular sector centred at the origin with angle 2θ > π . Since (−∞, a)∪(b,∞) ⊂
C\B and

m : (−∞, a] ∪ [b,∞) �−→ �z,

there exist −π < θ0 � π and c > 0, such that Re(eiθ0w) � c for all w ∈ �z. This ensures
that 0 �∈ Conv�z as required.

Since A = A∗, (A − z)2 with domain Dom(A2) is a normal operator, [Ka]. As we have
for the numerical range

Num(A − z)2 ⊆ Conv[Spec(A − z)2] ⊆ Conv�z,
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and Dom(A2) is a core for A, we have

Re[eiθ0〈(A − z)u, (A − z)u〉] � c

for all u ∈ Dom(A) with ‖u‖ = 1. In particular this holds true for all u ∈ L with ‖u‖ = 1, so
that PL(z) cannot be a singular matrix. �

As a consequence of theorem 2.4, the points of Spec(PL) which are close to the real line
are necessarily close to Spec(A). In other words, the method never pollutes. We also have
two immediate corollaries.

Corollary 2.5. If µ ∈ Spec(PL), then

inf{|Re µ − λ| : λ ∈ Spec(A)} � |Im µ|. (2.6)

If λ ∈ Spec(A) is isolated from other point of the spectrum, (2.6) provides a two-
sided estimate of λ, with an error explicitly determined without the need for computing
eigenfunctions. In case this error is small, we can actually improve it by a square.

Corollary 2.6. Let λ ∈ Spec(A). Assume that λ is isolated from other points of the spectrum
and let

δ := min{|λ − ν| : ν �= λ, ν ∈ Spec(A)}
= dist(λ, Spec(A)\{λ}). (2.7)

If |µ − λ| < δ/2 for µ ∈ Spec(PL), then

|Re µ − λ| <
2(Im µ)2

δ
. (2.8)

Proof. Theorem 2.4 yields∣∣∣∣µ −
(

λ ± δ

2

)∣∣∣∣ >
δ

2
. (2.9)

Using the assumption |µ − λ| < δ/2, we can rewrite (2.9) as

|Re µ − λ| <
δ

2
−

√
δ2

4
− (Im µ)2.

Thus

|Re µ − λ| <
(Im µ)2

δ
2 +

√
δ2

4 − (Im µ)2
<

2(Im µ)2

δ
.

�

Corollary 2.6 supersedes corollary 2.5 once we have found points of Spec(PL) sufficiently
close to an isolated point of the spectrum of A. Note that λ ∈ Spec(A) does not have to be a
discrete eigenvalue.

The above ‘non-pollution’ results are useful as long as there are points of Spec(PL) near
to the real line. It is not immediately clear, however, whether or not the eigenvalues of A

are approximated by some points in Spec(PL) when the dimension of L goes to infinity. The
results of [Bo1] and [Bo2] show that this is indeed the case, under a condition analogous
to (2.2).

Theorem 2.7 ([Bo2, theorem 2.2]). Let λ ∈ Specdisc(A), and let Ẽλ := {u : Au = λu} be the
corresponding eigenspace. Let Ln ⊂ Dom(A2) be subspaces with corresponding orthogonal
projections �Ln

, such that (2.2) holds for p = 0, 1, 2 and all u ∈ Ẽλ. Then there exist
eigenvalues λn ∈ Spec(PLn

) such that λn → λ as n → ∞.
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3. The quadratic projection method for perturbed periodic Schrödinger operators

Let H be the differential expression defined by (1.1) acting on the dense domain W 2,2(RN).
Let

p = 2 if N � 3,

p > 2 if N = 4,

p > N/2 if N � 5.

Below and elsewhere we assume that the potential V : R
N −→ R is uniformly locally Lp in

the sense that ∫
C

|V (x)|p dNx � M (3.1)

for any unit hyper-cube C, where the constant M is independent of C.
Condition (3.1) ensures that the operator of multiplication by V is (−�)-bounded with

relative bound equal to 0, so that H is a self-adjoint operator and C∞
0 (RN) is a core for H (cf

[ReSi, theorem XIII.96]). Furthermore, H is bounded below.

3.1. Approximating subspaces in the quadratic projection method for the Schrödinger
operator

We have already established, in the abstract setting of theorem 2.4, that, for any choice of a
subspace L ⊂ W 2,2(RN), the eigenvalues of the matrix polynomial PL(z) lying close to the
real axis will be close to the spectrum of H (and those ‘far away’ from the real axis do not
matter). In other words, the quadratic projection method does not pollute. In order, however,
to achieve a small error and approximate as many eigenvalues as possible, the choice of L (or
of a sequence of such spaces) is absolutely crucial, see theorem 2.7. Two main difficulties
here are the infinite geometry and the extra smoothness requirements needed for QL to make
sense, see (2.4).

Let �s := [−s, s]N . Let Ms := W
2,2
0 (�s) be a nested family of Sobolev spaces. Let

Ms,n, n ∈ N, be a sequence of n-dimensional subspaces of Ms . Let {φs,n,k}nk=1 be a basis for
Ms,n. Set, for j, k = 1, . . . , n,

[Bs,n]j,k :=
∫

�s

φs,n,jφs,n,k,

[As,n]j,k :=
∫

�s

∇φs,n,j · ∇φs,n,k + V φs,n,jφs,n,k,

[Qs,n]j,k :=
∫

�s

�φs,n,j�φs,n,k + 2V φs,n,j�φs,n,k + V 2φs,n,jφs,n,k.

(3.2)

and consider a quadratic (n × n)-matrix polynomial

Ps,n(z) := Qs,n − 2zAs,n + Bs,n. (3.3)

Now, let sn be a monotonically increasing unbounded sequence of positive real numbers,
let Ln = Msn,n and let Pn(z) = Psn,n(z). Then theorem 2.7 still holds as long as one can
verify (2.2) for p = 0, 1, 2.

If the potential V is sufficiently smooth, a natural choice of the basis functions φs,n,k are
piecewise C2 splines on �s satisfying φ|∂�s

= ∂φ/∂n|∂�s
= 0. However, even for this simple

choice, verifying (2.2) is still highly technical, and we omit the details.
Even fixing both parameters s and n and not imposing any condition on Ms,n except

Ms,n ⊂ W
2,2
0 (�s) still usually provides some useful information about the spectrum,
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with a posteriori two-sided estimates: if λn ∈ Spec(Ps,n) and dist(Re λn, Specess(H)) �
|Im λn|, then there exists λ ∈ Specdisc(H) which lies in the same spectral gap as Re λn. See
corollary 2.6 for a sharper estimate.

On the other hand, to achieve approximation it is crucial that both parameters n and s
go to infinity in our choice of approximate spaces Ln. If we fix an arbitrarily large s and let
n → ∞, then though we still do not have pollution (unlike a standard projection method),
neither we have approximation.

3.2. The quadratic matrix polynomial problem

The quadratic projection method prescribes finding the spectrum Spec(P ) of the quadratic
matrix polynomial of the form

P(z) = Q + 2zA + z2B,

cf section 2.2. In applications, the matrix coefficients Q,A and B are expected to be sparse
and real. They are always Hermitian, so P(z) is a self-adjoint matrix polynomial in the sense
of [Go].

The standard way of finding Spec(P ) is to construct a suitable companion linear pencil
eigenvalue problem,

Lv = µKv for some 0 �= v ∈ L ⊕ L, (3.4)

such that µ ∈ Spec(P ) if and only if (3.4) holds true. The coefficients, L,K , of the companion
form, (L − zK), are twice the size of the coefficients of P(z). They are not unique. Two
possible companion forms are given by

L =
(

0 N

−Q A

)
K =

(
N 0
0 B

)

and

L =
(−Q 0

0 N

)
K =

(
A B

N 0

)
,

where N is a non-singular matrix.
Different companion forms lead to different stability properties of the linear pencil

problem to be solved once the matrices have been assembled. It is desirable finding a
companion form that does not worsen the condition numbers of the original matrix polynomial
spectral problem. For a thorough account on this issue see [HiMaTi] and references therein.

3.3. Examples

One-dimensional example—Gaussian perturbation of the Mathieu potential. Let

N = 1, Vp(x) = cos(x), Vd(x) = −e−x2
,

and H as in (1.1) with potential V = Vp + Vd . We now illustrate how to implement the
theoretical discussion carried out in the previous sections to the study of Spec(H).

The essential spectrum of H is determined by Vp. It comprises an infinite number of non-
intersecting bands [αn, βn] of absolutely continuous spectrum whose endpoints are determined
by the Mathieu characteristic values [In, section 7.4]. The approximate endpoints of the first
five bands are given in table 1.

Addition of the negative Gaussian potential yields a non-empty discrete spectrum. By
implementing the quadratic projection method (3.3) into a finite element scheme, we detect
three eigenvalues of H with high accuracy:

λ1 ≈ −0.409 61, λ2 ≈ 0.377 63, λ3 ≈ 1.182 16.
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Figure 1. The quadratic projection method versus the Galerkin projection method. Here s = 49.
Inset: zoom near λ ≈ −0.35.

Table 1. Endpoints of the first five bands of the essential spectrum for the Gaussian perturbation
of the Mathieu potential, cf [AbSt].

n αn βn

1 −0.378 490 −0.347 670
2 0.594 800 0.918 058
3 1.293 17 2.285 16
4 2.342 58 4.031 92
5 4.035 30 6.270 82

The eigenvalue λ1 is below the bottom of the essential spectrum, whereas λ2 and λ3 lie in the
first and the second gap, respectively.

Figure 1 illustrates the main ideas discussed in the previous sections. The spectrum of
P(z) is shown as blue dots, while the eigenvalues of the standard Galerkin eigenvalue problem
(2.1) are shown as red crosses. The picture shows a narrow strip of the complex plane with
the bottom edge being the interval [−0.5, 2]. Note that there are eigenvalues of P(z) close to
each of the eigenvalues λ1, λ2 and λ3. According to corollary 2.5, these eigenvalues are not
spurious: the real part of a complex number z ∈ Spec(P ) is always an approximation of points
in Spec(H), with a two-sided error estimate depending on Im z. There are also eigenvalues
of the linear problem (2.1) near to Specdisc(H). These eigenvalues also provide one-sided
approximation (from above) for λj . However, one should be careful when using the Galerkin
method, as spectral pollution may happen. For this particular set of parameters there are two
spurious eigenvalues: one near −0.3 and the other near 1.1.

Two-dimensional examples. We now consider a family of case studies with N = 2. For
f ∈ W 2,2(R2), let

H0f (x, y) = −�f (x, y) + (cos(x) + cos(y))f (x, y)

H1f (x, y) = H0f (x, y) − c e−(x2+y2)f (x, y)

H2f (x, y) = H0f (x, y) − cx e−(x2+y2)f (x, y),

where c > 0. A straightforward argument involving separation of variables shows that

Spec(H0) =
⋃

λ∈Spec(H̃ )

{λ + µ : µ ∈ Spec(H̃ )},
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Table 2. Endpoints of Specess(H0).

n αn βn

1 −0.756 978 −0.695 338
2 0.216 310 0.570 389
3 0.914 677 ∞

Table 3. Approximated eigenvalues of H1 and H2.

Eigenvalues of H1 Eigenvalues of H2

c λ1 λ2 c λ1 λ2

5.0 −0.096 97 ± 3.39 × 10−4 10 0.137 7 ± 6.61 × 10−3 0.755 9 ± 7.07 × 10−2

5.2 −0.171 33 ± 2.03 × 10−4 11 0.086 5 ± 2.79 × 10−3 0.681 ± 1.05 × 10−1

5.4 −0.252 55 ± 1.45 × 10−4 12 0.011 5 ± 1.28 × 10−3

5.6 −0.339 05 ± 1.44 × 10−4 13 −0.091 90 ± 8.19 × 10−4

5.8 −0.429 02 ± 1.71 × 10−4 14 −0.222 50 ± 7.77 × 10−4

6.0 −0.769 46 ± 2.85 × 10−3 −0.519 78 ± 2.52 × 10−4 15 −0.373 0 ± 1.17 × 10−3

6.2 −0.786 12 ± 8.43 × 10−4 −0.605 27 ± 5.21 × 10−4 16 −0.527 9 ± 1.97 × 10−3

where H̃ = −∂2
x + cos(x) is the one-dimensional Mathieu Hamiltonian. Furthermore, as both

H1 and H2 are relatively compact perturbations of H0,

Specess(H1) = Specess(H2) = Spec(H0).

An approximation of the endpoints of the bands comprising the essential spectrum is given
in table 2. Unlike the one-dimensional model, we now have a finite number of gaps. Note
that the perturbation associated with H1 is radially symmetric and sign definite, while that
associated with H2 is sign indefinite and not radially symmetric.

With the quadratic projection method we have been able to detect some discrete
eigenvalues of H1 and H2 for different values of the coupling constant c. These results
are presented in table 3. As we increase the value of c, eigenvalues of H1 are moving from
right to left. From the numerical results, the same seems to be true for eigenvalues of H2.
Note that if an eigenvalue is close to an endpoint of a band of the essential spectrum, the
estimate (2.6) does not allow us to distinguish between this eigenvalue and the endpoint of the
band—thus the gaps in table 3.

Note that an eigenvalue λ1 of the Hamiltonian H1 is below the bottom of the essential
spectrum for c � 6. The Galerkin method could actually be implemented to approximate this
eigenvalue. The quadratic projection, however, works whether an eigenvalue is in a gap or not
and also provides a good approximation in this case.

In figure 2, we show the portion of Spec(P ) lying in the box [−1, 1/2] × [−3/2, 3/2]
for H ≡ H2, c = 14 and s = 60. Corresponding pictures for H1 and other choices of c
and s are qualitatively similar. This graph clearly indicates approximation to an eigenvalue
λ1 ≈ −0.2225 (see the right-hand picture). A large portion of Spec(P ) forms an annular
cloud around the spectral gap (β1, α2) and is sufficiently away from R to indicate that there
are no other eigenvalues in this gap. Note also that some eigenvalue of P(z) are close to
Specess(H2).

4. Final remarks

Other procedures exist for computing the eigenvalues of perturbed periodic partial differential
operators such as H, see [Do]. These include a method based on finding the eigenvalues of
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Figure 2. The quadratic projection method for our two-dimensional models. Left: typical output
in the computation of Spec(P ) for the operator H2 when c = 14 (here s = 60). Right: zoom in
the left picture on a narrow strip near the real line.

the matrix pencil problem

As,nu = λBs,nu for some u ∈ L\{0}, (4.1)

where the matrix coefficients are defined by (3.2) (that is applying the projection method) for
several values of s and n, and observing the dynamics of the eigenvalues of (4.1) as s increases.
Some of the eigenvalues of (4.1) will be spurious and some will be close to the true spectrum
of H. The spurious eigenvalues will typically be unstable as functions of the parameter s. The
approximate eigenvalues close to the true spectrum of H will be, on the other hand, very stable.
Thus, by increasing s, and tracking the evolution of the eigenvalues of (4.1), one would be
able to obtain some information about Spec(H).

This method, however, is quite inaccurate and it becomes useless when N � 2, and we are
interested in finding large eigenvalues. Furthermore, it very much depends upon the choice of
approximating subspaces Ls . We are not aware of any rigorous treatment of the effectiveness
of this approach.

As the chosen subspaces W
2,2
0 (�s) are naturally nested for increasing values of s > 0

and they are all embedded in W 2,2(RN), every point in Spec(H) is approximated (always

from above) by the spectrum of
(
H � W

2,2
0 (�s)

)
. Note that compactly supported functions

form a core for the operator and satisfy any boundary condition if the boundary is far enough
away. Spectral pollution in the projection method is a consequence of high eigenvalues of(
H � W

2,2
0 (�s)

)
accumulating at the bottom of the essential spectrum of H, and this effect is

unavoidable.
We suggest using instead (or in addition to standard techniques) the quadratic projection

method, which never pollutes.
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